IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 4, APRIL 1981

vices, n(¢) dividers/combiners can be used for feeding
multi-element antennas where progressive, equal phase de-
lay of the signal is desired. Another interesting mixer
application is mentioned in [9].
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On Solving Waveguide Junction Scattering
Problems by the Conservation of Complex
Power Technique
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A bstract— Normal mode expansions are used to mode match the tangen-
tial electric field at the transverse junction of two cylindrical waveguides.
Instead of mode matching the tangential magnetic field the principle of
conservation of complex power is invoked and leads, without a matrix
inversion, to an expression for the junction’s input admittance matrix, as
seen from the smaller guide. Simple matrix algebra and the reciprocity
theorem then provide the generalized scattering matrix of the two-port
(with higher order modes included). It is also shown that the solution
satisfies the continuity condition for tangential magnetic field in the
junction’s aperture. Numerical results are given for parallel plate wave-
guides with TEM, TE,, and TM, incident fields, numerical convergence
being achieved with about ten modes in the smaller waveguide.

I. INTRODUCTION

HEORETICAL and experimental studies of electro-
magnetic scattering at waveguide junctions have oc-
cupied the attention of numerous researchers for several
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decades. The variational method has provided quite accu-
rate dominant mode solutions to a wide variety of wave-
guide discontinuity problems [1], [2]. Since the advent of
fast digital computers interest has shifted to numerically
oriented techniques due to their broad scope. However,
among other restrictions [3]-[6], their range of application
is generally limited to two-dimensional problems. A rather
complete listing of the related literature is given in the
dissertation {7] of one of the authors of this paper.
Following a circuit theory approach, Sharp [8] has pre-
sented an exact solution for the admittance matrix of a
T-junction of rectangular waveguides. The size of this
matrix, which includes propagating and evanescent modes
of all ports, makes this approach inefficient when the
scattering matrix of the junction or of a single port is of
interest. Wexler [9], in dealing with the transverse junction
of cylindrical waveguides, begins with continuity equations
of transverse E and H, the field being expressed in terms of
waveguide modes, and obtains a solution for the mode
coefficients. Though the generalized form of reciprocity in
n-port junctions, as derived in [7], could be employed to
solve the reverse problem, i.e., when the incidence direction
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Fig. 1. Junction of two uniform cylindrical waveguides.

is reversed, an approach similar in nature to that used for
the forward problem was suggested; this method suffers
from relative convergence [4] difficulties.

The moment method with mixed basis functions has been
applied to the region inside a parallel plate waveguide ([10],
[11]). While best suited for two-dimensional problems due
to the matrix size involved, the method is also liable to
suffer from the relative convergence phenomenon [4].
Though otherwise generating satisfactory results, the geo-
metrical theory of diffraction ([12], [13]) fails to perform in
cutoff waveguides. The ray diagram is complicated and
accuracy is questionable unless the linear dimensions of the
scatterer are reasonably large [6].

In the steady state and for the lossless region with
vanishingly small thickness at the transverse junction be-
tween the two waveguides the net complex power flowing
into the region is zero. This power may be expressed in
terms of the tangential electric fields on either side of the
junction. In the past, this principle of conservation of
complex power has been used to determine the admittance
of open-ended waveguides [14] and of a dipole antenna
[15]). However, in the latter two cases the aperture field and
dipole current were assumed to be known a priori. Di-
amond [16] has used the principle with infinite planar
waveguide arrays. MacPhie and Zaghloul [17] focused on a
single open-ended rectangular waveguide with infinite con-
ducting flange and using the correlation functions of the
tangential electric fields in the aperture together with the
conservation of complex power principle deduced both the
terminal admittance matrix and the radiation pattern of
the flanged waveguide antenna.

The problem at hand is that of a closed system, two
cylindrical waveguides with a transverse planar junction
(see Fig. 1) and with an arbitrary field incident from the
smaller guide (guide 2). In Section II, we expand the fields
in each guide in terms of the TE and TM normal modes
with each mode’s amplitude conveniently represented by
the element of a column vector. Mode matching the
tangential electric field at the junction yields a matrix
equation for the mode amplitude vector for the larger
guide in terms of the mode amplitude vector for the
smaller. The principle of complex power conservation pro-
vides a second equation involving Hermitian forms for the
incident and transmitted waveguide powers. Combining
the two equations results in the elimination of the mode
amplitude vector of the larger guide and an expression for
the junction’s input admittance matrix (as seen from the

smaller guide). The associated scattering matrix, involving
incident and scattered mode amplitude vectors in the
smaller guide, is then determined by matrix manipulation.

The reciprocity theorem and simple matrix algebra per-
mits us to determine the cross scattering matrices involving
the mode amplitudes scattered into the larger from the
smaller and into the smaller from the larger guide as well
as the matrix involving mode amplitudes back scattered
into the larger guide due to modes incident from the same
waveguide.

In Section III, it is shown that by matching the tangen-
tial electric fields at the junction and using the complex
power conservation principle, the traditional condition of
continuity of the tangential magnetic field is also satisfied.

Section IV treats the case of parallel plate waveguides
and presents numerical results which demonstrate conver-
gence of the technique, good convergence being achieved
when about 10 modes are used in the smaller waveguide.
Moreover, it is to be noted that even with a truncated set
of waveguide modes the solution for the propagating modes
scattered at the junction exactly satisfies the conservation
law, i.e., the real power scattered from the junction is equal
to the real power incident on the junction.

I1I. CONSERVATION OF CoMPLEX POWER TECHNIQUE

In this section, a formal solution to the problem of
scattering at the junction of two cylindrical waveguides
(Fig. 1) will be presented. The junction’s scattering matrix
is divided into four submatrices

§= { S, § xz} '

S Syp

The (m, n) element of S, (i,j=1,2) is the amplitude of the

mth mode of guide / due to the unit amplitude nth mode of
guide /.

While S, (2 refers to the smaller guide) is computed by
the conservation of complex power technique and requires
inversion of a matrix of the same size, S,,, S,,, and $;, will
be derived successively through matrix equations involving
no matrix inversion.

Consider the incidence to be from the smaller guide. Let
S, be the aperture surface, S, be the conductor wall shown
by the shaded area, and S=S, + S, be the junction surface.
Moreover, let the sequences {FE, ,, H, ,} (i=1,2), where
E, . and H, are corresponding electric and magnetic
fields, form complete sets of orthogonal modes and be used
as basis functions for field expansion in the two guides.

The boundary condition on the electric field across the
aperture (z=0) is

Ecl,nel,n = E(C;:n +c2_,n)e2,n*
n

n

over S,

2 0., =0,  overS, (1)
n

where e, , is the transverse component of E, , at z=0 and
for i=1,2. In the smaller guide ¢, , and ¢, , are, respec-
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tively, the amplitudes of the incident and reflected nth
mode fields; c, , is the corresponding amplitude of the
transmitted field in the larger guide.

If we scalar multiply (1) by ef, and integrate over
S, +S,, the orthogonality of the normal modes in the
larger waveguide can be used to obtain the equation

cl,m = E Hmncl,n
n

2

where

f ef e, ,da
S(l
T ()
p I,m

Yy, .. is the characteristic admittance of the mth mode in
guide i (i=1,2), and p, ,, is the complex power carried by
the same mode of unit amplitude. In (2) ¢, , =c¢; , +¢5 ,is
the total amplitude coefficient of the nth mode in guide 2.

In matrix notation we can rewrite (2) as

¢,=He,=H(c; +e; )

— V%
H, n~ *0l,m

m

(4)

which we can call the E-field mode matching equation.

In the larger guide, just beyond the junction (at z=0_),
the modal expansion and a Poynting vector integration
may be used to show that the complex power transmitted
across the junction is given by the Hermitian form

P=c{P;c,

(5)
where 1 indicates Hermitian transpose and P, is a diagonal
matrix (due to mode orthogonality) whose mth diagonal
element is p, .

Looking from the smaller guide, the junction may be
viewed as a network with N-ports each corresponding to a
mode in this guide. The net flow of complex power into
this network is

1
P= 51; v,.
The nth components of the column vectors I, and ¥V, are
the nth port’s current and voltage, respectively. In terms of
the network input admittance matrix ¥, we may write

L=YV,
or

P=2 KL,

(6)
where P is the complex power at z=0; ¥, (i=1,2) is the
input admittance matrix of the junction seen by guide i
and is a nondiagonal square matrix unless the ports are
uncoupled; ¥V, (i=1,2) is the equivalent voltage vector and
is related to ¢; by

V,=Tc;,

I

i=1,2.

()
If the complex power associated with the equivalent volt-
age and the characteristic admittance of the equivalent

transmission line are set equal to the related parameters of
the corresponding mode, the mth diagonal element of the
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diagonal matrix 7, will be

2Pi m
7:,m=\/ o (8)
0i,m

which may be shown to be real. Substituting (7) into (6),
one obtains the Hermitian form for power into the junction

()

But it will be recalled that the power transmitted across
the junction into the larger guide ((5)) is also given by a
Hermitian form. Since the junction is lossless and of
vanishingly small volume the principle of conservation of
complex power dictates that the two expressions be equal.
From (5) and (9) we obtain

1
P= ECE{TJY?T:}%-

1
cfPec,= EcETJ Y, Tyc,. (10)
Moreover, ¢, and ¢, are related by (4), the E-field mode
matching equation. Using (4) in (10) gives

1
cQ{H*PIH— 3 T, Y;Tz}c2 =0.

Since the mode amplitude vector is nonzero and arbitrary
(e is totally arbitrary), it follows that the input admit-
tance of the junction network, as seen from the smaller
waveguide, is

Y, =27, "H'PJHT,”". (11)
2 2 1 2

Since T, is a real diagonal matrix its inverse can be easily

calculated. As a result no matrix inversion is needed to

accurately compute the junction input admittance matrix.
The input voltage scattering matrix is

Suzz(%2+’,2)—l(yoz_)/2) (12)

where Y, (i=1,2) is the characteristic admittance matrix
of guide i. ‘

It should be noted that in a variational approach to the
problem Collin ([2], p. 322) uses a matrix whose (s,7)
element g, (except for some obvious changes in notation)
is given by the corresponding element of Y, +Y, in (12).

The input scattering matrix is

$p=1," ISusz-

(13)

Turning now to §|,, one can use (4) together with the
identity ¢, +¢;” =(S,, +I)c; to show that

S, =H(S,,+1)

where I is the identity matrix.

To determine §,, the reciprocity theorem can be used {7]
to show that the (i, j) element of S7, (S, transposed)
multlphed by q],//ql,n Where qm,n :ffsmem,n ><hm,n'dam
(m=1,2), is the amplitude of the ith mode of the smaller
guide due to the unit amplitude jth mode of the larger
guide. Therefore

(14)

S5 :Q2_151T2Q1 (15)
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where Q,, (m=1,2) is a diagonal matrix whose ith diago-
nal element is g, ..
Finally, in view of (4), it may be shown that

S, =HS, —1I (16)

and all four submatrices of the junction scattering matrix §
are now known.

HI.

We have not satisfied the boundary conditions explicitly.
A careful investigation of this matter is needed to justify
the technique introduced in this paper. The fields inside the
waveguides are represented by the sum of the correspond-
ing waveguide modes. Therefore, the solution automati-
cally satisfies the boundary conditions everywhere but in
the aperture plane, z=0. Due to mode completeness, (4)
ensures that the transverse electric field is continuous over
the aperture and vanishes over S, (in the mean square
sense).

Continuity of the transverse magnetic field is repre-
sented by

22 010810 = 2(C5 =5 ) Yoo €0 ms
n n

ON SATISFYING THE BOUNDARY CONDITIONS

over S,.

(17)
Scalar multiplying (17) by e, and integrating over S,
gives
¢ —¢; =Ge,. (18)
The elements of matrix G are
= By,

2, m

G

mn

which is equivalent to the following matrix equation:

G=P;"'H'P]. (19)

To show that the matrix equation for the continuity of
magnetic field (18) is implicitly satisfied by the present
technique we can express the law of conservation of com-
plex power as

CJ{Plclz(c; —cz_)TPz(c; +c;):(c2+—c27)*P2c2

(20)
since
= c;r +e, .
Moreover
e, =(I+S,,)c, or ¢f =(I+Szz)‘1c2
and

¢ ”"2_:(I_Szz)c;:(I"Szz)(l*‘szz)ilcz-

Substituting (4) into (20) together with the above relation
gives

c{H'PHe, =c}(1+85) (1= 855) P,
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Fig. 2. Junction of two parallel plate waveguides.

which holds for any incident field. Thus
HTP1H2(1+S2‘;)_ I(I_Szg)Pz
or

I-S,, =P 'H'PIH(I+S,,).

Substituting (14) and (19) into the above equation gives
[-58,,=GS,,. (21)
Multiplying (21) by ¢, from the right gives
¢ —¢; =Ge,

which is identical to (18), the equation of continuity for the
magnetic field over the aperture surface S,.

Iv.

Consider two parallel plate waveguides with spacings
between plates @ and b and their junction at z=0, as
illustrated in Fig. 2. If the complete sets of orthogonal
modes are the TE and TM modes it may easily be verified
that the resulting matrix H will be decomposed into two
independent matrices for TE and TM excitation.

If the superscripts £ and e denote, respectively, the TE
and TM modes, then it is straightforward to show that the
diagonal matrices ¥,, P;, @,, and T, have diagonal ele-
ments given as follows:

JUNCTION OF PARALLEL PLATE WAVEGUIDES

Y25 Jko
YA ==y, Y5 ., =—7, 22
20 g, 10 02, Vs 0 (22)
a e —— a e
p}ll,p:ZYOthn’ pl,n_z;YO;’,‘n (23)
4. =plh. 4. =p (24)
a . _ [a
T2}fn: —i ’ T2,n_ E—’; (25)
where
nw \? nT\*
Yl.n:V<—a——) ~kg Yl,n:V(_—b—) —ky (26)
. = 1, n=0
", n>0
€o
Yo= ‘“_o, ko= w € - (27)



SAFAVI-NAINI AND MACPHIE: SOLVING WAVEGUIDE JUNCTION SCATTERING PROBLEMS

In (27), €y, pg, and w are, respectively, the permittivity,
permeability, and radian frequency.
The elements of the nondiagonal matrices H¢ and H”"

are
sin (

H,=( >"2;’”’( ) (_)) 7%
b
:g, %z%, m,n=0,1,2,--- (28)
n2 sin(mTWb) n
mn=(—1) (ﬂ)2_(n_77)2 a7 b
a b
:g, %:%, m,n=1,2,3,--- (29)

The input admittance matrices with incidence from the
smaller guide (guide 2) are

¥ =2(1) TPt (1)

(30)
where m=h and m=e for the TE and TM cases, respec-
tively. Note that since T,” is a diagonal matrix ¥,” can be
obtained without matrix inversion.

The voltage scattering matrices corresponding to the
load admittances in (30) are

m my~1 m m
Sp=(Yg+1Y") (Y5 —1")

with m=#h (TE) or e (TM).

Using (31) and (13), and (14)-(16) of Section II, the four
submatrices [S,,], [S;], [S5,), and [S},] for the junction’s
scattering matrix § can be easily deduced.

The three distinct cases of TEM, TM,, and TE, incident
waves were considered with the various matrices truncated
to include seven modes in the smaller guide and 20 modes
in the larger; this causes H to becomes nonsquare, but as is
evident from (30), a square admittance matrix (7X7 in this
case) is always obtainable.

From the field-theoretic point of view the actual trans-
verse electric fields in the aperture are of prime impor-
tance. Fig. 3 gives this information for the first type of
excitation (TEM) by using the truncated solution vectors
¢,r and ¢, in (1). This graph indicates that with a finite
number of modes the boundary conditions at z=0 are well
satisfied. A study of the edge condition ([18], p. 10) reveals
that near the edge (x=b), |E |o1/r'/? where r is the
distance measured from the edge. The computed aperture
distributions conform approximately to this type of singu-
larity. However, in the larger guide the field (E,) must
vanish for x>>b, giving rise to the sudden drop in the curve
of Fig. 3(a) from a maximum to almost zero in the neigh-
borhood of x=b.

The magnitude and phase of the reflection coefficient p
and transmission coefficient 7 for different incident modes
are plotted in Figs. 4, 5, and 6 as functions of the size of the

(31)

larger waveguide. As the dimension of the larger waveguide
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Fig. 3. Distribution of |E,| along x axis with TEM incidence from
smaller waveguide; a=0.4A, b=0.2A. (a) Looking from larger wave-
guide. (b) Looking from smaller waveguide.
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Fig. 4. Reflection coefficient p and transmission coefficient v for TEM
incidence as functions of a/A; incidence from the smaller waveguide;
b=0.35A.

increases so should the mismatch and |p|; however, the
energy being carried away by the new propagating modes
tends to decrease |p|. The two opposing factors generate
local minima. This effect is amplified by strong coupling
between the incident and new propagating modes with the
same transverse distribution.

In Fig. 6, results from the Waveguide Handbook ([1], pp.
298-304) are shown for comparison, These variationally
based results are for a limited range (0.5<<a/A<(1.0) and
at the upper limit the agreement with the present results is
not good.

The size of the matrix being inverted in the computer
program, i.e., the size of ¥, +¥,, is equal to the size of the
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Fig. 6. Reflection coefficient p and transmission coefficient 7 for TE,

incidence as functions of a/A; incidence from the smaller waveguide;
b=0.551

scattering matrix §,,. To investigate the convergence of the
technique, the magnitude and angle of p and r are plotted
as functions of the size of ,, for both TE and TM cases
and incidence from the larger and smaller waveguide in
Figs. 7 and 8. The results reveal rapid convergence with
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matrix sizes of ten or greater, giving accuracy to about
three significant figures in most cases. As indicated in
Section II, for incidence from the larger waveguide, p and 7
are derived from the entire matrix S,,, thereby imposing
stronger convergence conditions on §,, as a whole.
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V. CONCLUSION

This paper has shown that the conservation of complex
power technique, described in Section II, can provide for-
mally exact solutions to certain waveguide junction scatter-
ing problems. The method was used to yield time-efficient,
numerically convergent solutions for the case of the junc-

tion of two parallel plate waveguides, as given in Section .

Iv.

In the near future, a paper on the generalization to the
practical problem of scattering at the junction of two
rectangular waveguides (work that is already complete [7]),
will be submitted, together with results on the scattering by
a diaphragm with a rectangular iris.

A direct solution to the problem of scattering by a
number of semi-infinite septums of arbitrary thicknesses
may also be obtained. While a different formulation is
needed, the conservation of complex power concept seems
applicable to the problem of scattering by a T-junction of
parallel plate or rectangular waveguides. In the case of the
junction of two waveguides having different dielectric fill-
ngs, convergence is expected to be a function of the order
of singularity at the edges, as indicated by Mittra and Lee
(18], p. 11).

The above mentioned configurations may be considered
as the building blocks for more complex structures such as
filters, sidewall couplers, slow wave structures, directional
couplers, and finite septums, to state only a few. Applying
the generalized scattering matrix concept together with the
conservation of complex power technique should provide
formally exact, fast and accurate solutions to many of
these problems.
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