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vices, n(~) dividers/combiners can be used for feeding [s]

multi-element antennas where progressive, equal phase de- ~41

lay of the signal is desired. Another interesting mixer

application is mentioned in [9].
[5]
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On Solving Waveguide Junction Scattering
Problems by the Conservation of Complex

Power Technique

REZA SAFAVI-NAINI AND ROBERT H. MACPHIE, SEN1ORMEMBER, IEEE

,4 fists-act— Normal mode expansions are used to mode match the tangen-

tial electric field at the transverse junction of two cylindrical waveguides.

Instead of mode matching the tangential magnetic field the principle of

conservation of complex power is invoked and leads, without a matrix

inversion, to an expression for the junction’s input admittance matrix, as

seen from the smaller guide. Simple matrix algebra and the reciprocity

theorem then provide the generalized scattering matrix of the two-port

(with higher order modes included). It is also shown that the solution
sa&fies the continuity condition for tangential magnetic field in the

junction’s aperture. Numerical results are given for parallel plate wave-

guides with TEM, ‘I T,, and TM, incident fields, numerical convergence

being achieved with about ten modes in the smaller wavegnide.

I. INTRODUCTION

T HERETICAL and experimental studies of electro-

magnetic scattering at waveguide junctions have oc-

cupied the attention of numerous researchers for several
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decades. The variational method has provided quite accu-

rate dominant mode solutions to a wide variety of wave-

guide discontinuity problems [1], [2]. Since the advent of

fast digital computers interest has shifted to numerically

oriented techniques due to their broad scope. However,

among other restrictions [3]– [6], their range of application

is, generally limited to two-dimensional problems. A rather

complete listing of the related literature is given in the

dissertation [7] of one of the authors of this paper.

Following a circuit theory approach, Sharp [8] has pre-

sented an exact solution for the admittance matrix of a

T-junction of rectangular waveguides. The size of this

matrix, which includes propagating and evanescent modes

of all ports, makes this approach inefficient when the

scattering matrix of the junction or of a single port is of

interest. Wexler [9], in dealing with the transverse junction

of cylindrical waveguides, begins with continuity equations

of transverse E and H, the field being expressed in terms of

waveguide modes, and obtains a solution for the mode

coefficients. Though the generalized form of reciprocity in

n-port junctions, as derived in [7], could be employed to

solve the reverse problem, i.e., when the incidence direction

00 18-9480/81 /0400-0337$00.75 ~ 1981 IEEE
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Fig. 1. Junction of two uniform cylindrical waveguides

is reversed, an approach similar in nature to that used for

the forward problem was suggested; this method suffers

from relative convergence [4] difficulties.

The moment method with mixed basis functions has been

applied to the region inside a parallel plate waveguide ([ 10],

[1 l]). While best suited for two-dimensional problems due

to the matrix size involved, the method is also liable to

suffer from the relative convergence phenomenon [4].

Though otherwise generating satisfactory results, the geo-

metrical theory of diffraction ([12], [13]) fails to perform in

cutoff waveguides. The ray diagram is complicated and

accuracy is questionable unless the linear dimensions of the

scatterer are reasonably large [6].

In the steady state and for the lossless region with

vanishingly small thickness at the transverse junction be-

tween the two waveguides the net complex power flowing

into the region is zero. T@s power may be expressed in

terms of the tangential electric fields on either side of the

junction. In the past, this principle of conservation of

complex power has been used to determine the admittance

of open-ended waveguides [14] and of a dipole antenna

[15]. However, in the latter two cases the aperture field and

dipole current were assumed to be known a priori. Di-

amond [16] has used the principle with infinite planar

waveguide arrays. MacPhie and Zaghloul [17] focused on a

single open-ended rectangular waveguide with infinite con-

ducting flange and using the correlation functions of the

tangential electric fields in the aperture together with the

conservation of complex power principle deduced both the

terminal admittance matrix and the radiation pattern of

the flanged waveguide antenna.

The problem at hand is that of a closed system, two

cylindrical waveguides with a transverse planar junction

(see Fig. 1) and with an arbitrary field incident from the

smaller guide (guide 2). In Section II, we expand the fields

in each guide in terms of the TE and TM normal modes

with each mode’s amplitude conveniently represented by

the element of a column vector. Mode matching the

tangential electric field at the junction yields a matrix

equation for the mode amplitude vector for the larger

guide in terms of the mode amplitude vector for the

smaller. The principle of complex power conservation pro-

vides a second equation involving Hermitian forms for the

incident and transmitted waveguide powers. Combining

the two equations results in the elimination of the mode

amplitude vector of the larger guide and an expression for

the junction’s input admittance matrix (as seen from the

smaller guide). The associated scat tering matrix, involving

incident and scattered mode amplitude vectors in the

smaller guide, is then determined by matrix manipulation.

The reciprocity theorem and simple matrix algebra per-

mits us to determine the cross scattering matrices involving

the mode amplitudes scattered into the larger from the

smaller and into the smaller from the larger guide as well

as the matrix involving mode amplitudes back scattered

into the larger guide due to modes incident from the same

waveguide.

In Section III, it is shown that by matching the tangen-

tial electric fields at the junction and using the complex

power conservation principle, the traditional condition of

continuity of the tangential magnetic field is also satisfied.

Section IV treats the case of parallel plate waveguides

and presents numerical results which demonstrate conver-

gence of the technique, good convergence being achieved

when about 10 modes are used in the smaller waveguide.

Moreover, it is to be noted that even with a truncated set

of waveguide modes the solution for the propagating modes

scattered at the junction exactly satisfies the conservation

law, i.e., the real power scattered from the junction is equal

to the real power incident on the junction.

II. CONSERVATION OF COMPLEX POWER TECHNIQUE

In this section, a formal solution to the problem of

scattering at the junction of two cylindrical waveguides

(Fig. 1) will be presented. The junction’s scattering matrix

is divided into four submatrices

J% h]
LJ—

1s21%]”
The (m, n) element of S,, (i, j = 1, 2) is the amplitude of the

m th mode of guide i due to the unit amplitude n th mode of

guide j.

While S,, (2 refers to the smaller guide) is computed by

the conservation of complex power technique and requires

inversion of a matrix of the same size, S,2, S21, and S1, will

be derived successively through matrix equations involving

no matrix inversion.

Consider the incidence to be from the smaller guide. Let

S. be the aperture surface, SCbe the conductor wall shown

by the shaded area, and S= S. + SCbe the junction surface.

Moreover, let the sequences {E,,., H,, ~} (i= 1,2), where

Ei,. and Hi,. are corresponding electric and magnetic

fields, form complete sets of orthogonal modes and be used

as basis functions for field expansion in the two guides.

The boundary condition on the electric field across the

aperture (z= O) is

n n

X~,,ne1,n=03 over SC (1)
n

where e, ~ is the transverse component of E,, ~ at z = O and

for i= 1:2. In the smaller guide c:. and cz~. are, respec-
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tively, the amplitudes of the incident and reflected n th

mode fields; cl,. is the corresponding amplitude of the

transmitted field inthe larger guide. ,

If we scalar multiply (1) by e~,~ and integrate over

S.+ SC, the orthogonality of the normal modes in the

larger waveguide can be used to obtain the equation

C,, m = 2KWF2,. (2)
n

where

J
d+,m”e2, n a

H~n = Y;,,~ ‘“
Pl, nl

(3)

Y~,,~ is the characteristic admittance of the m th mode in

guide i (i= 1,2), and p,, ~ is the complex power carried by

the same mode of unit amplitude. In (2) C2,. = c~. + Cz:. is

the total amplitude coefficient of the n th mode m guide 2.

In matrix notation we can rewrite (2) as

C,= HC2=H(C; +C2–) (4)

which we can call the E-field mode matching equation.

In the larger guide, just beyond the junction (at z = 0+),

the modal expansion and a Poynting vector integration

may be used to show that the complex power transmitted

across the junction is given by the Hermitian form

P=c~P,c, (5)

where ~ indicates Hermitian transpose and P1 is a diagonal

matrix (due to mode orthogonality) whose m th diagonal

element is p,, ~.

Looking from the smaller guide, the junction may be

viewed as a network with N-ports each corresponding to a

mode in this guide. The net flow of complex power into

this network is

p=l~tJ/
222.

The n th components of the column vectors 12 and V2 are

the n th port’s current and voltage, respectively. In terms of

the network input admittance matrix Y2 we may write

12= Y2J”2

or

P=+ VJY; V2 (6)

where P is the complex power at z = O; ~. (i= 1, 2) is the

input admittance matrix of the junction seen by guide i

and is a nondiagonal square matrix unless the ports are

uncoupled; ~. (i= 1,2) is the equivalent voltage vector and

is related to Ci by

Vj=qci, i=l ,2. (7)

If the complex power associated with the equivalent volt-

age and the characteristic admittance of the equivalent

transmission line are set equal to the related parameters of

the corresponding mode, the m th diagonal element of the

diagonal matrix ~ will be

r

2Pi m
~,m=

~
(8)

which may be shown to be real. Substituting (7) into (6),

one obtains the Hermitian form for power into the junction

P=; CI{T; Y;T2}C2. (9)

But it will be recalled that the power transmitted across

the junction into the larger guide ((5)) is also given by a

Hermitian form. Since the junction is lossless and of

vanishingly small volume the principle of conservation of

complex power dictates that the two expressions be equal.

From (5) and (9) we obtain

— ‘ct TtY2tT2c2.c!~lcl — 2 2 2 (lo)

Moreover, c1 and C2 are related by (4), the E-field mode

matching equation. Using (4) in (10) gives

{ )
1 T+Y;T2 C2=0.cl HTP,H– ~ z

Since the mode amplitude vector is nonzero and arbitrary

(cJ is totally arbitrary), it follows that the input admit-

tance of the junction network, as seen from the smaller

waveguide, is

Y2 = 2 T2- ‘~H ‘PfHT2- ‘ . (11)

Since T2 is a real diagonal matrix its inverse can be easily

calculated. As a result no matrix inversion is needed to

accurately compute the junction input admittance matrix.

The input voltage scattering matrix is

S02=(Y02+ Y2)-’(Y02– Y2) (12)

where YOi (i= 1,2) is the characteristic admittance matrix

of guide i.

It should be noted’ that in a variational approach to the

problem ,Collin ([2], p. 322) uses a matrix whose (s, r)

element g,, (except for some obvious changes in notation)

is given by the corresponding element of Yoz+ YZ in (12).

The input scattering matrix is

S22 = T2- ‘S T02 2. (13)

Turning now to S12j one can use (4) together with the

identity C2–+ c: = (S22 +1 )c/ to show that

S,2=H(S22+I) (14)

where Z is the identity matrix.

To determine S21 the reciprocity theorem can be used [7]

to show that the (i, j) element of S& (S12 transposed)
multiplied by q 1,~/~z: 1>where qm n =JJsme~, ~ xh~,n”dam
(m= 1,2), is the amphtude of the ‘ith mode of the smaller

guide due to the unit amplitude jth mode of the larger

guide. Therefore

S21= Q2-lS~Ql (15)
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where Q~ (m= 1,2) is a diagonal matrix whose i th diago-

nal element is q~,,.

Finally, in view of (4), it may be shown that

S1, =HS21 –I (16)

and all four submatrices of the junction scattering matrix S

are now known.

III. ON SATISFYING THE BOUNDARY CONDITIONS

We have not satisfied the boundary conditions explicitly.
A careful investigation of this matter is needed to justify

the technique introduced in this paper. The fields inside the

waveguides are represented by the sum of the correspond-

ing waveguide modes. Therefore, the solution automati-

cally satisfies the boundary conditions everywhere but in

the aperture plane, z= O. Due to mode completeness, (4)

ensures that the transverse electric field is continuous over

the aperture and vanishes over SC (in the mean square

sense).

Continuity of the transverse magnetic field is repre-

sented by

Xc,,n%,,rr%n= X(cZn ‘5,n)h2,n%,n, over%.

n n

(17)

Scalar multiplying (17) by e;, ~ and integrating over S=

gives

C2+—c2– =Gcl. (18)

The elements of matrix G are

P:,. ~.
Gmn = —

P:, m ‘m

which is equivalent to the following matrix equation:

G= P~’’HfPf. (19)

To show that the matrix equation for the continuity of

magnetic field ( 18) is implicitly satisfied by the present

technique we can express the law of conservation of com-
plex power as

c~p,c, =(C; -C; )’P2(CJ +.; )=(.; -C; )’P2C2

(20)

since

C2 = c-j++c1

Moreover

C2=(Z+S22)CJ or C2+=(l+SJ’CZ

and

C2+–c; =(1–S22)C: =(1–S22)(I+S22) -’C2.

Substituting (4) into (20) together with the above relation

gives

)-’(Z-SJ2)P2C2c~H ‘P1Hc2 = C!( Z+ S/2

I

t

r>1
a

b

-
Y z

Fig. 2. Junction of two parallel plate waveguides.

which holds for any incident field. Thus

HfPIH=(I+S~)-*( 1–S~2)P2

or

I–S22 =P~-’H~P)H(I+S22).

Substituting (14) and (19) into the above equation gives

I–S22 = GS12. (21)

Multiplying (21) by c: from the right gives

C2+—C2”=GC1

which is identical to (18), the equation of continuity for the

magnetic field over the aperture surface S. .“

IV. JUNCTION OF PARALLEL PLATE WAVEGUIDES

Consider two parallel plate waveguides with spacings

between plates a and b and their junction at z= O, as

illustrated in Fig. 2. If the complete sets of orthogonal

modes are the TE and TM modes it may easily be verified

that the resulting matrix H will be decomposed into two

independent matrices for TE and TM excitation.

If the superscripts h and e denote, respectively, the TE

and TM modes, then it is straightforward to show that the

diagonal matrices Y02, P,, Q,, and ~ have diagonal ele-

ments given as follows:

Y&n=@Yo,
jko y

Y;*, n=— ~
Jko

(22)
Y2, n

(27)



SAFAVI-NAINI AND MACPHIE : SOLVING WAVEGUIDE JUNCTION SCATTERING PROBLEMS 341

In (27), to, PO, and Q are, respectively, the permittivity,

permeability, and radian frequency.

The elements of the nondiagonal matrices He and Hh

are

.!? F=; , m,n=0,1,2, -.. . (28)
a’ a

l)n
2nT

ab (%2-(%)2‘
=! !??=!!, m,~=l,z,j,.... (29)

a’ a

The input admittance matrices with incidence from the

smaller guide (guide2) are

Y2m= 2( T2m) – ltH ~tP1~tHm( Tzm) –1
(30)

where m = h and m= e for the TE and TM cases, respec-

tively. Note that since T2mis a diagonal matrix Y2~ can be

obtained without matrix inversion.

The voltage scattering matrices corresponding to the

load admittances in (30) are

s:=(Yo; +Y2”)-’(Yo&Y2~) (31)

with m= h (TE) or e (TM).

Using (31) and (13), and (14)-(16) of Section II, the four

submatrices [S22], [S12], [S21], and [S1 I ] for the junction’s
scattering matrix S can be easily deduced.

The three distinct cases of TEM, TM,, and TE, incident

waves were considered with the various matrices truncated

to include seven modes in the smaller guide and 20 modes

in the larger; this causes H to becomes nonsquare, but as is

evident from (30), a square admittance matrix (7X 7 in this

case) is always obtainable.

From the field-theoretic point of view the actual trans-

verse electric fields in the aperture are of prime impor-

tance. Fig. 3 gives this information for the first type of

excitation (TEM) by using the truncated solution vectors

c,~ and c2~ in (1). This graph indicates that with a finite

number of modes the boundary conditions at z= O are well

satisfied. A study of the edge condition ([18], p. 10) reveals

that near the edge (x= b), [EX Ic 1/r1\3 where r is the

distance measured from the edge. The computed aperture

distributions conform approximately to this type of singu-

larity. However, in the larger guide the field (EX) must

vanish for x > b, giving rise to the sudden drop in the curve

of Fig. 3(a) from a maximum to almost zero in the neigh-

borhood of x = b.

The magnitude and phase of the reflection coefficient p

and transmission coefficient r for different incident modes

are plotted in Figs. 4, 5, and 6 as functions of the size of the

larger waveguide. As the dimension of the larger waveguide
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increases so should the mismatch and Ip I; however, the

energy being carried away by the new propagating modes

tends to decrease Ip 1. The two opposing factors generate

local minima. This effect is amplified by strong coupling

between the incident and new propagating modes with the

same transverse distribution.

In Fig. 6, results from the Waoeguide Handbook ([1], pp.

298- 304) are shown for comparison, These variationally
based results are for a limited range (0.5 <a/A< 1.0) and

at the upper limit the agreement with the present results is

not good,

The size of the matrix being inverted in the computer

program, i.e., the size of Y02+ Y2, is equal to the size of the
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scattering matrix S22. To investigate the convergence of the

technique, the magnitude and angle of p and T are plotted

as functions of the size of Szz for both TE and TM cases

and incidence from the larger and smaller waveguide in

Figs. 7 and 8. The results reveal rapid convergence with

matrix sizes of ten or greater, giving accuracy to about

three significant figures in most cases. As indicated in

Section II, for incidence from the larger waveguide, p and ~

are derived from the entire matrix S22, thereby imposing

stronger convergence conditions on S22 as a whole.
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V. CONCLUSION

This paper has shown that the conservation of complex

power technique, described in Section II, can provide for-

mally exact solutions to certain waveguide junction scatter-

ing problems. The method was used to yield time-efficient,

numerically convergent solutions for the case of the junc-

tion of two parallel plate waveguides, as given in Section

IV.

In the near future, a paper on the generalization to the

practical problem of scattering at the junction of two

rectangular waveguides (work that is already complete [7]),

will be submitted, together with results on the scattering by

a diaphragm with a rectangular iris.

A direct solution to the problem of scattering by a

number of semi-infinite septums of arbitrary thicknesses

may also be obtained. While a different formulation is

needed, the conservation of complex power concept seems

applicable to the problem of scattering by a T-junction of

parallel plate or rectangular waveguides. In the case of the

junction of two waveguides having different dielectric fill-

ings, convergence is expected to be a function of the order

of singularity at the edges, as indicated by Mittra and Lee

([18], p. 11).

The above mentioned configurations may be considered

as the building blocks for more complex structures such as

filters, sidewall couplers, slow wave structures, directional

couplers, and finite septums, to state only a few. Applying

the generalized scattering matrix concept together with the

conservation of complex power technique should provide

formally exact, fast and accurate solutions to many of

these problems.
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